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the cumulative numbers of seminvariants: 

N#k = ~,r ~trial (6) 
• " j k  ¢1 Ok 

~/h~or=  /~r GDtheor 
• ",jk~" Ok • (7) 

Suppose now that the theoretical distribution corre- 
sponds exactly to the true distribution of 
seminvariants, then a suitable random variable to test 
is 

Djk = sup, [.N'thk ~°r-)/'0k[. (8) 

Maximal admissible deviations, D~ it = 
I)¢'thk ~°r- )¢'Oklmax, at significance level 0.01, are depen- 
dent on the number of seminvariants Njk in the tested 
region; these are given in Table 1. 

The [.hr~ ° r -  ~/'rjk[ values for the last interval of 
values are identically zero because N ~  °r = )¢',jk = Njk, 
where /Vjk is the number of seminvariants in the jth 
region of the kth distribution. Therefore, only ( r -  1) 
first intervals of ~ values are tested for maximal 
differences between cumulative distributions. If in 
some region and interval the theoretical distribution 
does not correspond to the true distribution, then the 
critical values taken from Table 1 must be increased.* 

In the case of special seminvariants there are only 
two possible seminvariant values and also only two 
intervals. Thus, the number of seminvariants in the 
second interval is uniquely determined by the number 
of seminvariants in the first interval and in this case 

F~crit * The optimal values "-'sk have to be selected by experience for 
each type of theoretical distribution. 

nor ,  ~.,heo, "/¢'#klm~ o f  the Table 1. Critical values ~'jk = ~, Ok 
K o l m o g o r o v - S m i r n o v  test at the 0.01 significance level 

N j k  2 6 10 15 20 40 > 40 
D~ it 2 4 5 6 7 10 1 "63,f-~k 

only o n e  d i f f e r e n c e  O j k  = l/~rthe°r, I j k  - -  Nljk is t e s t e d  
against Table 1 for one region of magnitudes. For 
centrosymmetric structures the efficiency of the 
Kolmgorov test based on testing 

O j k  = Dthe°r-- ptrial 
* +jk  - -  +jk  max 

may be compared with that of the coefficient 
K y.. /ntheor ptrialx2/~, 

= WOk i, 1" +jk  - -  +jk ] I / . . ,  WOk 

used in the x 2 test [equation (19) in paper II] under 
a restrictive condition that the only contribution to 
the summation is a maximal difference, i.e. K ' =  

Dtheor ptrialh2 
,! +jk - -  ,t +jk  ] m a x .  ThUS, t he  Kolmogorov test is e x p e c -  

t ed  to have worse discriminative abilities than the x 2 
test, but its convenience may be seen in its simplicity. 

The author would like to thank Professor H. Schenk 
for helpful discussions and support of this work. 
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Abstract 

It has been shown that by measuring the angular 
dependence of X-ray diffraction scattering far from 
the Bragg peak, information on the structure perfec- 
tion of thin subsurface layers can be directly obtained. 
This is associated with the fact that the waves gener- 
ated in the crystal bulk compensate one another, and 

* Present address: Kurchatov Institute of Atomic Energy, 
Kurchatov Square 46, Moscow 123182, USSR 

the intensity of rocking-curve tails is due mainly to 
scattering in the subsurface layer. The typical thick- 
ness of a scattering layer is related to the deviation 
angle by a simple relationship: A z - "  Lextoo/a, where 
a is the deviation angle of the specimen from the 
exact Bragg position, tOo the diffraction maximum 
width, and Lex the extinction length. The method of 
three-crystal diffractometry permitted the observation 
for the first time with a conventional X-ray source of 
a distorted layer with a thickness of - 1 0  nm. 
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Introduction 

X-ray diffraction is a powerful method for studying 
the perfection of crystal structures. While Laue-case 
diffraction provides information on the crystal bulk, 
Bragg-case diffraction gives information about layers 
whose thicknesses (up to several Ixm) are comparable 
with the extinction length, Lex, which determines the 
penetration depth of X-rays, provided the exact Bragg 
condition is satisfied. The deviation from the exact 
Bragg position results in deeper penetration of X- 
rays, which is determined by the photoelectric absorp- 
tion coefficient. Hence, it is natural to draw the con- 
clusion that an X-ray diffraction method can be used 
to study layers whose thicknesses are equal to or 
somewhat greater than the extinction length. 
However, in some cases, the use of more precise 
measurements permits one to investigate even thinner 
layers (Cathcart, Petersen & Sparks, 1969; Afanas'ev, 
Kovalchuk, 
Kovjev & Kohn, 1977). 

In actual fact, the potentialities of X-ray diffraction 
methods in studying thin surface layers are much 
greater. In the following, it will be shown that the 
intensity of the rocking-curve tail is due mainly to 
scattering in the subsurface layer. This is associated 
with the fact that the waves arising in the crystal bulk 
compensate one another. The characteristic thickness 
of a scattering layer is given by a simple relationship 
with the parameter of deviation angle a: 

Az = Lextoo/ a. (1) 

The method of three-crystal diffractometry (TCD) 
(Iida & Kohra, 1979; Afanas'ev et al., 1981) permits 
us to study separately different kinds of diffraction 
scattering from the crystal under investigation and to 
follow the behavior of the rocking-curve tail at devi- 
ation angles I~1 = 10-0BI >>0. This method provides 
reliable measurements of both intensities and shapes 
of diffraction scattering peaks (the main peak and the 
pseudopeak) at deviation angles a exceeding the 
value of too by more than two orders of magnitude, 
even when one uses standard X-ray sources. 

As will be shown below, the angular dependence 
of the main peak intensity gives us directly the infor- 
mation about the perfection of subsurface layers of 
thickness 10 nm and, thus, about the thicknesses of 
transitional layers. Now, let us consider the problem 
in more detail. 

Theory 

Two functions are necessary for a complete descrip- 
tion of structural changes occurring in a disturbed 
surface layer. The first, q~(z), characterizes the dis- 
placement of atomic planes from their positions in 
an ideal lattice and the other, e -~<z), or the so-called 
Debye-Waller factor, describes atomic disorder in 
crystal planes. In other words, the latter function 

describes the degree of amorphization of a specimen. 
If an X-ray beam falls onto a crystal at angle 
sufficiently exceeding tOo, it is possible to use the 
kinematical approximation of the diffraction scatter- 
ing. Then, we can write the following relationship 
between the amplitudes of incident (Eo) and scattered 
(Eh) waves: 

E h  

R(a)='-~o ° 

- iKxh Io ° 
- 217hl exp(iK/2ITh]) 

X ( X o - a ) z  e x p [ i q ~ ( z ) - w ( z ) ] d z  , (2) 

where IKI = 27r/A, 7h = COS (K, n) and a = a2 sin 20B, 
n is the inner normal to the exit surface of the crytstal, 
Xo, Xh are the Fourier components of the polarizabil- 
ity, and z is the distance from the entrance surface 
of the crystal. 

It is PR(a)= [R(a)[ 2 that determines the intensity 
of the main peak. Let ~p(z) and w(z) be changed at 
a relatively slow rate in (2) and the a value be chosen 
sufficiently large. Integrating (2) by parts, we arrive at 

R ( a ) =  X~hexp{i~p(O)--w(O)} (3a) 
X o - a  

[xhl 2 
pR(a)_lxo_al2exp{-2w(O)} , (3b) 

where ~o(0) and w(0) are the values of these functions 
on the crystal surface. 

For large values of angles a the main contribution 
to R(a)  comes from a layer with the thickness 

where 

Az = 2 ~ l ~ h l / K a  = 7r/4(tooLox/~), (4) 

21xh] 2(~'ol ~'hl) '/= 
too = sin 20B L~x-- KIXh I 

Since the diffraction peaks at tooa-~< 10 -2 can 
readily be measured, we arrive at the direct method 
of characterization of surface layers with thickness 
Az- - - lOnm [this value was obtained using Lex = 
0.64 i~m for Ge( 111 ) reflection and Cu K a  radiation]. 

Expressions (3) and (4) are valid only if parameters 
~o(z) and w(z) change slowly. This means that the 
transitional layer between an ideal crystal and the 
damaged crystal layer (the latter can form as a result 
of ion implantation, epitaxial growth etc.) is not too 
thin. In this connection, it is interesting to consider 
the following hypothetical case. Suppose that the 
factor e -w(~) varies along the crystal depth according 
to the law 

e-W(~) = de -xz + b. (5) 

Here, for simplicity, we assumed that interatomic 



354 DIFFRACTION SCATTERING AT ANGLES FAR FROM THE BRAGG ANGLE 

distances within the layer are constant. Then the 
integral in (2) can readily be taken and the reflection 
coefficient can be written in the form 

( d  2 +2db) b 2 
P R ( a ) =  x 2+@2 4~b 2. (6) 

Here the following notation is introduced: 

K (a - Xo) Ka 

' / ' -  217n1 217.1" 

Experimental 
The surface structure of a perfect Ge crystal has been 
studied by the method of three-crystal diffractometry 
(TCD). The experimental set up is shown in Fig. 1. 
The first crystal, K~, a plane monochromator, forms 
a beam with small divergence which falls on crystal 
K .  under investigation fixed at a certain position a 
near 0B. The angle distribution of X-rays reflected by 
the second crystal - TCD spectrum - is recorded 
during simultaneous rotation of a crystal analyser, 
Ki l l .  

It is evident that angular intensity distribution 
obtained after the reflection by the second crystal is 
determined by the product of the reflection curves 
obtained for the first (PR,) and the second (PR,,) crys- 
tals taking due account of their mutual angular 
position. 

In the general case, the TCD spectrum consists of 
three maxima. One of them, the so-called main peak, 
characterizes the tail of the reflection curve for the 
crystal under investigation and is formed by the rays 
incident on the first crystal at angle 0B and rays 
reflected by the crystal under investigation beyond 
the reflection maximum. The rays incident on the first 
crystal at angle 0B--a are reflected by the second 
crystal in the reflection maximum and form the second 
peak (the so-called pseudopeak). Analyzing the TCD 
spectrum one can readily see that for the symmetrical 
Bragg diffraction the TCD pseudopeak has the 
angular position /tO = a, whereas the main peak is 
located at/tO = 2a with respect to the angular position 
of the Bragg peak at/tO = 0. 

If both crystals have the same rocking curves in 
the given reflection, the intensities of the pseudo and 
main peaks are the same and decrease proportionally 
to to2/c~ 2 with the increase of the deviation angle a. 
The slightest change in the crystal reflectivity results 

K, .t Kw 

K,, 

Fig. 1. Experimental arrangement of a triple-crystal diffractometer. 

in the redistribution of peak intensities in the 
spectrum. 

For the perfect crystals the TCD spectrum has only 
the two above-mentioned dynamical peaks (the main 
peak and the pseudopeak). The third diffuse 
maximum is observed only for imperfect crystals, its 
position and shape being fully determined by the 
defects in the crystal. 

Thus, the TCD method provides a unique possibil- 
ity to distinguish between the coherent and incoherent 
components of the total scattering. Changing the 
angular position of the crystal under consideration 
(second crystal), we can obtain a series of TCD 
spectra and observe the changes in the main peak 
intensity up to high angles. 

Figs. 2 and 3 show the results obtained for two Ge 
crystals - a perfect crystal first polished with a 
diamond paste and then etched in such a way that a 
partially damaged layer is still preserved on the crystal 
surface. The presence of the damaged layer is proved 
by a weak diffuse maximum at A0 = 0 (Fig. 2a). As 
is seen from Figs. 2 and 3, the angular dependence 
of intensities for the peaks obtained for both speci- 
mens are quite different. The TCD spectra shown in 
Figs. 2(a), (b) and obtained for deviation angles tx = 
90" (Fig. 2a) and a = 450" (Fig. 2b) show that at small 
1 
t / ( imp S-') 
i 

12000 : ,  , '  

i4000 t ~ ' ' 

0 90 180 450 900 ~O" 

(a) (b) 

Fig. 2. TDC spectra from Ge( l 11 ) crystals, (n, - n ,  n) arrangement, 
symmetric Bragg diffraction for (a) a = 90", (b) a = 450". Dashed 
line for ideal crystal, solid line for crystal first polished with 
d iamond paste and then partially etched. 
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0.16 0"78 0-052 0.039 0-031 0-026 0.022 0.019 

Fig. 3. Experimental  results of function P R ( a ) a  2 for the ideal 
crystal (I7, II) and specimen (O, O, A, A); II, A, • tr < 0; Fq, 
A, O a > 0. Theoretical calculation (solid line) according to 
equation (6) with b =  l, d = - l  (inset shows a model of a 
damaged layer). 
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deviation angles the intensities of main peaks for a 
perfect crystal (AO= 180'3 and a crystal with the 
damaged layer are almost the same, whereas at a = 
450" the intensity of the main peak (AO = 900'3 for 
the specimen with the damaged layer is much lower 
than that of the main peak for the perfect crystal. Fig. 
3 shows that in the case of a perfect crystal the 
intensity of the main peak decreases proportionally 
to to2/t~ 2, whereas for the specimen with the damaged 
layer the decrease of the function PR(a) a 2 is observed 
for deviation angles exceeding 200". Experimental 
data and theoretical calculations (solid line, Fig. 3) 
from equation (6) with d = -  1 and b--- 1 are in good 
accordance, which gives 9 + 3 nm as the thickness of 
the damaged layer. 

formed within a depth of 3 nm. Of course, the method 
would give even better results if we used more power- 
ful radiation sources or accumulate intensity. 

It is worth noting that for simplicity we discussed 
the thickness of a distorted layer. Analysing (2), we 
can readily see that, in fact, we measure not the 
thickness of the damaged layer but rather that of a 
transitional layer between damaged and perfect parts 
of the crystal. It is evident that the addition of an 
amorphous layer to the crystal (if this does not result 
in additional stresses) does not affect the diffraction 
spectra. We believe that the method discussed here 
will be very powerful for the effective study of transi- 
tiofial layers between a perfect-crystal matrix and the 
growing film. 

Conclusion 

The use of three-crystal diffractometry permitted us 
to observe directly for the first time a damaged layer 
with a thickness of 9 nm. It should be noted that the 
real potentialities of the method are even g rea te r -  
the absence of a PR(a)a2-function decrease for a 
perfect crystal within the whole range of measure- 
ments (---900'3 indicates that no damaged layer is 
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Abstract 

By its two-dimensional nature, the A~o, A20 intensity 
distribution of a Bragg X-ray reflexion has greater 
angular resolution and greater information content 
than the corresponding one-dimensional Aw reflexion 
profile. It allows for the measurement of integrated 
intensity, exactly and equally truncated, over the full 
range of 0. Also, it is potentially correctable point by 
point for extinction and simultaneous diffraction. 
Consequently, it has inherent capabilities for the esti- 
mation of structure-factor values with improved 
accuracy. To realize this potential, it is necessary to 
identify and appreciate the various factors which, 
convoluted together, determine the 2D distribution. 
Among these factors, important ones are the crystal 
mosaic/fragment distribution, /z, the X-ray source 
emission distribution and the wavelength distribu- 
tion. By first treating the situation for a hypothetical 

0108-7673/84/040355-'09501.50 

point source, the relation of the reflectivity (or 'level 
of interaction') with the/z distribution is highlighted. 
Extension to a real source indicates the probable need 
for deconvolution in practical cases to extract mean- 
ingful estimates of the /z  distribution and hence the 
reflectivity distribution, the most significant measured 
quantity for accurate structure-factor evaluation. The 
2D distribution is discussed in relation to single (H) 
scattering, multiple (H.H) scattering (extinction) and 
simultaneous (H.K) scattering. 

Introduction 

Since the advent of the four-circle X-ray diffrac- 
tometer in the late 1950's and its use for the determina- 
tion of structure-factor values, much effort has been 
devoted to (a) clarifying the roles of the many com- 
ponents in the measured intensity distribution of 
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